
Better CSS
with Sass

A Pocket Guide

by Cole Henley

Five Simple Steps

2

3

Better CSS with Sass

by Cole Henley

Published in 2015 by Five Simple Steps

119 St Mary Street

Cardiff

CF10 1DY

United Kingdom

On the web: www.fivesimplesteps.com

and: cole007.net

Please send errors to errata@fivesimplesteps.com

Publisher: Five Simple Steps

Copy Editor: Ary Lacerda

Technical Editor: Stu Robson

Production Manager: Amie Lockwood

Art Director: Craig Lockwood

Designer: Valentino Cellupica

Copyright © 2015 Cole Henley

All rights reserved. No part of this publication may be reproduced or transmitted in

any form or by any means, electronic or mechanical, including photocopy, recording

or any information storage and retrieval system, without prior permission in writing

from the publisher.

ISBN: 978-3-863730-81-9

A catalogue record of this book is available from the British Library.

Proudly made in Wales.

…

Introduction

6

In a relatively short period of time, Sass has become an essential

part of the front-end developer toolbox. It takes a lot of the legwork

out of writing good CSS and can help foster good practices on

writing flexible, maintainable, robust and efficient code.

Personally, Sass is the first resource I go for when creating a

new website. It has gone from a tool to speed up the way I write

my style sheets to a means of writing increasingly complex and

clever CSS. There are new blog posts and code snippets posted daily

demonstrating the things that can be accomplished with Sass that

were barely conceivable two or three years ago. However, with this

speed in evolution, the barrier to entry has risen fast. Where do

we start if we are new to Sass? How do we distinguish our mixins

from our functions? How do we use variables? What is a partial?

Although it is a relatively simple language to learn, Sass brings with

it a wide range of terms that can be intimidating to somebody only

familiar with HTML and CSS.

This pocket guide is intended to introduce you to Sass and will

explain some of the confusing terms that may have held you back

from learning this brilliant tool. It will provide an overview of how

Sass can dramatically improve your workflow and help make your

CSS work easier for you. Although this guide is primarily aimed at

those new to Sass, hopefully there will be something for everybody

within these pages.

http://2014.report.gridsetapp.com/
http://www.sassnews.com/

7

1

Getting
started
with Sass

10

What is Sass

Sass is a pre-processor. What this means is that it takes code in one

format and outputs it in another format; in this case, CSS. At its

simplest, this can mean taking your normal CSS and minifying it to

reduce the file size. However, as we will cover in this pocket guide,

there are numerous benefits to using a pre-processor like Sass.

The first benefit is that it separates our working code from our

production code. This is particularly good practice when it comes

to working in teams and using version control. Secondly, we can use

the functions and methods built into Sass to make how we write our

CSS more efficient. Thirdly, we can use principles like nesting and

partials to better organise our code. Finally, we can extend Sass with

a range of third-party mixins, functions, libraries, and frameworks.

Sass vs Scss

Sass isn’t the only CSS pre-processor. You may also have heard of

Less. Originally, Less was by far more popular than Sass because Less

was far easier to pick up, using a markup similar to CSS. However,

over time Sass has become the pre-processor of choice amongst the

discerning front-end developers, particularly with the introduction

of its sibling syntax, Scss.

Sass itself uses a different form of notation from CSS. In an

effort to speed up development, it employs its own shorthand,

stripping out brackets and instead using tabs. For example, I might

http://www.fivesimplesteps.com/products/version-control-with-git
http://lesscss.org/

11

define some colour rules for an alert box with the following, using

tabs to denote the difference between the selector I’m defining

(.alert-box) and the properties (colour and border) I’m affecting:

.alert-box

	 color: #dd0000;

	 border: 1px solid #dd0000;

If we’re coming from CSS, this approach is quite difficult to pick

up. Scss was introduced to ease the migration to a pre-processor by

letting us extend the simple CSS we use every day. The above code

example in Scss would simply be:

.alert-box {

	 color: #dd0000;

	 border: 1px solid #dd0000; }

Look familiar? Even without using a pre-processor, we can

understand the above. Scss makes the transition to using a pre-

processor much easier by working in a way we already know.

Furthermore, it reduces the barrier to begin working with Sass

because we can just drop our existing CSS into our Sass files and

these will be processed just fine.

We distinguish between Sass and Scss by the file extension we

use. Sass files are saved as .sass whilst Scss files are saved as .scss.

Although Sass and Scss are ultimately two distinct syntaxes for

delivering the same thing — using the same language, functions,

12

and principles — for ease of learning, I will focus on Scss. For

the rest of this guide, I will use Sass to refer to the language and

techniques involved in working with this pre-processor and .scss to

refer to the files we are working with.

Installing Sass

You can run Sass in one of two ways: by installing an application

on your computer or by using the command line. I will touch on

some applications that can install Sass for you later but for this

pocket guide, we will be installing and working with Sass through

the command line. I’ve learned from bitter experience it is almost

always better to work on the command line rather than relying on

an application where often our understanding of what is happening

is sacrificed for ease of use.

When we use a pre-processor like Sass, the processing can

happen in one of two ways: by converting files as needed or by

pointing Sass to a particular file or folder in order to watch for

changes within your files. When a change is made, the processing

kicks in and CSS is outputted in the desired format.

So what are we waiting for? Let’s roll our sleeves up and get our

hands dirty.

13

Mac: Ruby and Sass

Installing Sass on a Mac is relatively straightforward. It operates as

a gem – that is, a package that runs using the Ruby programming

language. Fortunately for Mac users, Ruby comes already installed,

so all we need to do is install the Sass gem. We can do this by typing

into the command line:

gem install sass

Depending on your permissions level, you may need to use the sudo

command. This basically tells the command line that you are the

root administrator or super user and that you really, really want to

install Sass. You will likely be prompted to enter your administrator

password. We should always exercise caution when using sudo but

in this instance we should be fine:

sudo gem install sass

We can check to see if Sass is installed correctly by typing

the following:

sass -v

The -v tells the command line that we are requesting the version of

Sass that is available. As this is being written, the latest version of

Sass is 3.4.15, so the above returns:

14

Sass 3.4.15 (Selective Steve)

Selective Steve is the release name of the latest (3.4) Sass version. If

at any time we want to update our version of Sass, we type:

sudo gem update sass

This will replace our version of Sass with the latest available.

Windows

Windows users will first need to install Ruby, which can easily be

achieved by using installer software. Check out the installer at

rubyinstaller.org to get Ruby up and running. Once you have Ruby

installed, follow the instructions for Mac Users above to then get

Sass up and running.

Other tools

As well as the command line, there are a number of tools that will

help compile Sass for you. Mixture is a great tool that can perform

a range of actions to speed up your workflow, from compiling Sass

to image compression and Javascript minification. For something

simpler, Scout is a good app available for both Mac and Windows for

handling Sass processing.

http://rubyinstaller.org/
http://mixture.io/
http://mhs.github.io/scout-app/

15

The above tools can be great if you are scared of the command

line. However, learning from the command line gives you a greater

chance to learn how things work under the bonnet and have a

clearer understanding of what happens when things go wrong.

Running Sass on the command line

At its most basic, the way Sass works is by converting a file from

one format to another. This is what we mean by a pre-processor.

An example would be useful to illustrate this. Create a folder you

want to work in and save a file called style.scss with some simple

CSS, for example:

body {

	 font-family: sans-serif; }

This is a relatively straightforward bit of CSS to change the default

font of our website. Our browser won’t understand .scss files so we

must first convert this into CSS. To do this we use the command line

to navigate to the folder our file is situated in:

cd /Applications/MAMP/htdocs/styles

All cd is doing is pointing the command line to a specific location

in the file system we want to work in. We can then use the sass

command to convert a .scss file in that folder into a .css file for use

in our production code:

16

sass style.scss style.css

Et voila. If you look at your folder, it will now contain an extra file:

style.css containing your outputted (production) CSS. Depending

on the version of Sass you are using and your configuration, you

may also have another file: sass.css.map but I will cover this in more

detail later in this guide.

The above is quite straightforward but we don’t want to be

writing this out every time we want to convert our files to CSS, so we

can use Sass to watch a file for any code changes. When a .scss file

is updated, it will process the necessary changes automatically and

produce the CSS we want to output.

This can be achieved by using the watch command:

sass --watch style.scss:style.css

There are two things to note here. Firstly, we are extending Sass with

the watch command (note the two hyphen characters) and secondly,

when using watch, we use a colon (:) instead of a space between

the input and output files. This will now monitor the source file for

any changes and process them as and when it needs to. This will

continue until we terminate the command, which we can do with

Ctrl + c.

If the .scss and .css files we are working with are in the same

folder, we can even dispense with specifying the output file:

sass --watch style.scss

17

In the fourth chapter, I will talk about ways we can break our

working Sass code into different files. In this context, we would

want to watch out for changes to more than one file, so we want to

apply the watch command to a folder instead. We can do this with

the following:

sass --watch /styles

This says watch out for changes to files that are in the /styles/scss

folder and output the results to the corresponding CSS files in the

/styles folder. The above example are all using relative paths based

on where we are in the file system. We can also use absolute paths to

do the same thing:

sass --watch /styles/scss:/styles/

So we’ve got Sass installed, we know how to convert Sass (or .scss)

files into CSS, and we can use our existing CSS, which will process

just fine into Sass. But where’s the fun in that? In the next chapter,

I will start to look at some of the things we can do in Sass that we

can’t do in CSS.

sass --watch

	 /Applications/MAMP/htdocs/styles/scss:/Applications/

	 MAMP/htdocs/styles

18

So we’ve got Sass installed, we know how to convert Sass (or .scss)

files into CSS, and we can use our existing CSS, which will process

just fine into Sass. But where’s the fun in that? In the next chapter,

I will start to look at some of the things we can do in Sass that we

can’t do in CSS.

19

2

The building
blocks of
Sass

22

When we first look at Sass, we come across a number of terms that

might be new to us, such as variables, scope, nesting, extends,

mixins, and functions. These are all new to CSS but they ultimately

serve the same purpose: to extend the functionality of CSS by

borrowing from some of the principles of programming languages

you may already be familiar with, such as PHP and JavaScript. This

chapter will look at these and see how, once we have Sass compiling

our Sass files into CSS, we can then make the most of what Sass has

to offer.

Variables

How many times when writing CSS have you had to make repetitive

changes across your files? For example, when a font-size changes

or a client wants to modify a brand colour. In the past, we would

have to do a ‘find and replace’ to change all these things within our

style sheets. Variables mean we can make this information available

globally by defining it once and then referring to this original

definition elsewhere in our Sass files. So, for example, if we know

we are going to be using red across our site, we might want to define

this as:

$red: #dd0000;

Here we are defining a variable – red – using the dollar symbol ($)

as a prefix to say we want to treat this as a variable. We then use a

23

colon (:), as we would with CSS, to define the value for our variable.

Finally, we terminate our rule with a semi-colon (;). To reference

that variable, taking our example from the previous chapter, we

would use:

.alert-box {

	 color: $red;

	 border: 1px solid $red; }

This means that if, at some later stage, we want to update the tone of

red, we can just update the variable’s value and this change will be

reflected in every instance that $red is used in our Sass.

$red: #bd250a;

// produces

.alert-box {

	 color: #bd250a;

	 border: 1px solid #bd250a; }

With this simple example, you can immediately see the value of

variables. Any information that is repeated across your CSS file is

best served by variables. The important thing to remember is that,

like CSS, Sass is read in sequence, so you will need to define your

variables before you start using them.

Colours, fonts used, and breakpoints defined in media queries

all serve as great examples of when you might want to use a variable.

24

Nesting

The next important thing to know about Sass is that when we define

our CSS, we can nest our arguments. In normal CSS, when we want

to define the CSS of a child element, we would do the following:

ul.nav {

	 list-style: none; }

ul.nav li {

	 padding: 0; }

In Sass, we can simplify this by nesting our queries to demonstrate

their context. By nesting, we use curly brackets to wrap around

selector rules. To define a rule for child elements, we just place these

rules within the parent brackets:

ul.nav {

	 list-style: none;

	 li {

		 padding: 0; }}

Here the li selector is nested within the brackets of the ul.nav

selector. In normal CSS, all our arguments are tied to the context

of the specific selector chain we are using. In Sass, however, our

arguments inherit context, so the above will output exactly the same

as in our original declaration:

25

ul.nav {

	 list-style: none; }

ul.nav li {

	 padding: 0; }

So with Sass, we can not only save the amount of selectors we have

to type, but also make the CSS we write much more modular, or in

other words, tied to the particular context we are styling. You can

nest as deep as you want, but beware of the dangers of specificity as

this will cause havoc once you end up with selectors three or more

levels deep.

Sass accepts all the selectors we would normally use in CSS.

However, with nesting, Sass introduces a new selector: the parent

selector denoted by the ampersand character (&). The parent

selector serves as a way of accessing a selector that has already been

defined in our nesting. So, for example if we want a global list style

which has padding but then want to define a class that has smaller

padding, we can do the following:

ul {

	 padding: 20px;

	 &.slim {

		 padding: 10px; }}

https://css-tricks.com/sass-style-guide/
https://css-tricks.com/sass-style-guide/

26

This will produce the following CSS:

ul {

	 padding: 20px; }

ul.slim {

	 padding: 10px; }

So & is repeating the immediate parent within our nesting sequence.

And we can chain this infinitum, so the following:

ul {

	 padding: 20px;

	 &.slim {

		 padding: 10px;

		 &.slimmer {

			 padding: 5px; }}}

Would ultimately produce:

ul.slim.slimmer {

	 padding: 5px; }

You should exercise caution with this approach as by abusing

nesting, we can end up with a nasty case of classitis and a tangled

mess of selectors!

A really good example of where you might want to use the

parent selector is with pseudo-classes. For example, with links, we

http://www.stubbornella.org/content/2011/04/28/our-best-practices-are-killing-us/
https://css-tricks.com/pseudo-class-selectors/

27

might want to define hover and focus states:

a {

	 text-decoration: none;

	 &:hover, &:focus {

		 text-decoration: underline; }}

This will output as:

a {

	 text-decoration: none; }

a:hover, a:focus {

	 text-decoration: underline; }

Another use of parent selectors is if we want to increase the

specificity of a particular nested selector to override a default

setting. For example:

p {

	 font-size: 1em;

	 .article & {

		 font-size: 1.2em; }}

This would apply a different font-size to paragraph elements

contained within an .article, as this would create a more specific rule.

Additionally, we can use the parent selector to set rules for a specific

context. For example, if we wanted to style a certain element based

http://www.stuffandnonsense.co.uk/archives/css_specificity_wars.html

28

on its location within a site and we used different classes on the

body element for each section:

.article h1 {

	 background-color: #FFAFA5;

	 .home & {

		 background-color: #BBFCA2; }

		 .about {

			 background-color: #A0ADF1; }}

// produces

.article h1 {

	 background-color: #FFAFA5; }

.home .article h1 {

	 background-color: #BBFCA2; }

.article h1 .about {

	 background-color: #A0ADF1; }

Since Sass version 3.3, we can also use parent selectors to create

compound selectors. That is, we can define new classes by

appending our selector to a parent class name. Previously, if we have

two kinds of footers on a site that feature different font sizes, we

might want to declare this in Sass as follows:

.footer {

	 font-size: 16px;

	 &.footer-small {

		 font-size: 12px; }}

29

However, we can simplify this immensely by using the & to create a

compound selector as follows:

.footer {

	 font-size: 16px;

	 &-small {

		 font-size: 12px; }}

The output is similar but the code we are using to generate that

output is much simpler, more concise, and ultimately less specific:

footer {

	 font-size: 16px; }

.footer-small {

	 font-size: 12px; }

This approach really comes to the fore when you start to look at

Object Oriented CSS and approaches like SMACSS and BEM. I tend to

use BEM in my projects, which is based on the principle of extending

our class names to reflect the place of an element within a particular

context. BEM stands for Block Element Modifier and involves

defining our CSS classes by a block (the parent object), an element (a

descendent object) and a modifier (variations to that object). Let us

say that we have an article and want to provide styles for an image

in that article but also an alternative styling if we want that image to

be smaller. Using double underscore __ as a separator for elements

and double hyphen -- as a separator for modifiers, we might write

https://github.com/stubbornella/oocss/wiki
https://smacss.com/
http://csswizardry.com/2013/01/mindbemding-getting-your-head-round-bem-syntax/

30

the following:

.article {

	 margin: 20px 0;

	 &__image {

		 width: 40%; }

	 &--small {

		 width: 20%; }}

The output for this is:

.article {

	 margin: 20px 0; }

.article__image {

	 width: 40%; }

.article__image--small {

	 width: 20%; }

Thus, we can immediately see how we can use Sass to simplify the

way we achieve increasing modularity within our CSS rules and

class names. And in all honesty, such modular approaches would

not have been possible without the simplicity that tools like Sass

afford us.

31

Nesting CSS properties

As well as nesting our CSS selectors, we can also use namespaces

to nest our CSS properties. Namespaces are a common term in

programming to signify a group of variables or properties that share

a particular functionality. Namespaces in CSS tend to be reserved for

those properties that can be specified as shorthand – e.g. font – or

broken down into specific sub-properties – e.g. font-family, font-

size, etc. Other examples of namespaced properties in CSS include

background, list, margin, padding and border. To nest our properties,

we declare our root property and then nest any child properties

within curly brackets, as we would for nested selectors:

.body {

	 background: {

		 color: #A1FF7F;

		 image: url(tile.png);

		 repeat: no-repeat;

		 position: center; }}

This compiles to:

.body {

	 background-color: #A1FF7F;

	 background-image: url(tile.png);

	 background-repeat: no-repeat;

	 background-position: center; }

32

Extends

As we have seen, we can use the parent selector (&) to avoid

repetition. However, this is very much tied to the scope of the

particular parent. What happens if we want to reuse some Sass code

later in our project? We have variables, but these are only really for

reusing small values such as a pixel size or colour value; they cannot

be used for reproducing large chunks of code. This is where extends

come to the fore.

We can use extend – through the @extend command – to reuse

already declared code snippets. For example, we might want to

apply the same stylistic approach to both form elements and quote

elements:

.form {

	 border: 1px solid #219fe3;

	 background: #7cc6ef; }

.quote {

	 border: 1px solid #219fe3;

	 background: #7cc6ef;

	 color: #000; }

There is a lot of repetition here. We could instead use a common

class between these elements to avoid repetition, but we can also

use extends to repeat the same rules across classes. Taking the above

example, we can instead write:

33

.quote {

	 @extend .form;

	 color: #000; }

Which will output the following:

.form, .quote {

	 border: 1px solid #219fe3;

	 background: #7cc6ef; }

.quote {

	 color: #000; }

This makes our Sass much more reusable, but there can be

dangers of our Sass code spilling out into other elements with this

approach. To resolve this problem, we can use something called

placeholder selectors.

Placeholder selectors

Extends can be incredibly useful for creating resuable blocks of CSS.

However, in the above example, if we end up writing lots of styles

specific to our .form element these will then be applied to our .quote

elements which is not very helpful. This is what the placeholder

selector is designed to resolve.

The point of a placeholder selector is that we are creating a set

of rules that we never intend to be outputted into CSS except for

34

later reference as an extend within other elements. We define our

placeholder selectors through the use of a percent symbol (%) to

denote that this selector will only ever be used as a reusable piece

of code:

%list-style {

	 list-style: none;

	 padding: 0; }

.list-group {

	 @extend %list-style;

	 margin: 2.5em 0 0.75em; }

CSS will not understand % so this part of the code is never outputted

by Sass into our CSS:

.list-group {

	 list-style: none;

	 padding: 0; }

.list-group {

	 margin: 2.5em 0 0.75em; }

This is much more effective and avoids the risks of over-extending

our Sass.

So in this chapter, we’ve seen the ways in which Sass can be

used to avoid repetition in our CSS. We can use variables to take

control of values we want to reuse throughout our styles. We can

nest our Sass to define context and through the parent selector, we

35

can keep our Sass files lean and efficient. Through extends, we can

start to create reusable, modular styles and with the placeholder

selector, we can begin to think about avoiding code bloat. In the next

chapter, we will look at how some of the principles of programming

can be applied to Sass to make our code more logical.

3

Logical Sass

38

We spent the last chapter talking about the ways Sass can make our

code more reusable. A lot of these techniques, Sass borrows from

the tried and tested principles of programming. In this chapter,

we will look at how Sass takes this further by letting us apply logic

and helping us make even more reusable CSS though mixins and

functions.

Simple Maths

One of the nice features of Sass is that we can start to perform

simple maths functions. Addition (+), multiplication (*), division (/)

and subtraction (-) are all ways we can control and modify numbers

within our Sass. We just need to make sure that we contain any

mathematic operations within brackets, e.g.:

.heading {

	 font-size: (24 / 2) + px; }

Will output as:

.heading {

	 font-size: 12px; }

Note the use of the plus character after our calculation. Here, we are

not using the + character to carry out an addition, but saying that

we want to append the px unit to our calculation. This simple maths

39

may not seem to be very useful but the power of mathematics can be

demonstrated when we start to look at mixins.

Mixins

We touched on extends and placeholder selectors as a way of

creating reusable chunks of code. But what if we want to then modify

that code? The code produced by extends and variables are fixed;

we cannot change them once they have been defined, only override

certain rules by redefining them. Mixins provide a way of creating

reusable chunks of code but offer the ability to modify parts of that

code as and when we need them. We define the mixin, any variables

we want it to access (called arguments), and then our logic – the stuff

we want our mixin to output – is contained within curly brackets:

$mixin mixin-name($variable) {

	 output stuff here; }

A good, practical example where we might want to use a mixin is

when defining em or rem font-sizes for a website. Say your designer

has given you the pixel values for your fonts but working these out

in relation to each other can quickly become very confusing. So a

mixin can help work this out for us:

40

$base-font-size: 16;

@mixin font-size($size) {

	 font-size: $size + px;

	 font-size: ($size / $base-font-size) + rem; }

Here, we are defining $size as an argument and then outputting two

lines of CSS: one calculating a rem font based on a global font-size

(defined by our $base-font-size variable) and a px fallback for older

browsers. Again, we are using the plus character (+) to concatenate

– join together – the calculated values and the units we need. To

access our mixin, we then use the @include method. This tells Sass

we are treating what follows as a mixin:

.box {

	 @include font-size(24); }

The resulting CSS for this is:

.box {

	 font-size: 24px;

	 font-size: 1.5rem; }

We can extend our mixin further to factor in line-height. Say

we want to output a line-height as a proportion of our font-size

(rather than using a specific unit). We can do the following, dividing

our $line-height by our $size variable:

41

@mixin font-size($size, $line-height) {

	 font-size: $size + px;

	 font-size: ($size / $base-font-size) + rem;

	 line-height: ($line-height / $size); }

So calling this mixin, we now give it two arguments:

.box {

	 @include font-size(24, 32); }

Which outputs as:

.box {

	 font-size: 24px;

	 font-size: 1.5rem;

	 line-height: 1.33333; }

If we want, we can set default arguments for our mixin. So, for

example, if the line-height is relatively constant in our designs,

we don’t need somebody to enter it repeatedly. So if we know our

font-size is 16px and our line-height is normally 32px, we could

set a default line-height using the colon separator when defining

our arguments:

@mixin font-size($size, $line-height: 32) {

…

.box {

	 @include font-size (24); }

42

Say we want our text to sit along a baseline rhythm. We can start

to use some simple maths in our arguments to define a consistent

line-height. So if our base font-size is 16px and our base line

height is 24px, we can specify a default line height of 24 divided by

whatever value is entered for $size:

@mixin font-size($size, $line-height: (24/ $size)) {

So with very little effort, we can create really useful, reusable chunks

of CSS. We don’t necessarily even need to have custom variables in

our mixins. One good example of this might be a mixin for when

you are using floats intensively in your CSS layouts. We simply write

a clearfix mixin to use every time we want to clear an element:

@mixin clearfix {

	 &:before,

	 &:after {

		 display: table;

		 content: '';

		 line-height: 0; }

	 &:after {

		 clear: both; }}

Here, we are using the parent selector we covered in the last chapter

and the :before and :after pseudo-classes in conjunction with the

content property to insert content into the DOM and clear whatever

precedes it. Note that without any arguments for our mixin, we can

declare it and call it without needing to employ rounded brackets:

http://24ways.org/2006/compose-to-a-vertical-rhythm

43

form {

	 @include clearfix; }

This produces the following CSS:

form:before, form:after {

	 display: table;

	 content: "";

	 line-height: 0; }

form:after {

	 clear: both; }

Functions

A function is like a mixin but instead of returning code blocks, it can

only be used to return values. As a nonsensical function, we could

perform some simple maths to produce a value squared:

@function squared($number) {

	 @return ($number * $number); }

The @return command is specifying the value or string we want to

return from our function. To access this function, we would just do

the following:

44

.text {

	 padding: squared(10) + px; }

Which will return:

.text {

	 width: 100px; }

One of the great things with Sass is that we can apply mathematics

to variables featuring unit values. For example, consider the

following double function:

@function double($number) {

	 @return ($number + $number); }

.text {

	 width: double(10px); }

Will output:

.text {

	 width: 20px; }

As with mixins, we can declare as few or as many arguments as we

want for our functions and also set default values:

45

@function line-height($font-size, $line-height: 1.5) {

	 @return ($font-size * $line-height); }

.text {

	 line-height: line-height (18px); }

Which returns:

.text {

	 line-height: 27px; }

However, the real power of mixins and functions comes when we

start to use conditionals within them to determine their output.

Conditionals

Conditionals are simple means for determining an output

depending on an input: e.g. if X is Y then do Z. Conditionals are the

building blocks of any programming language and are particularly

useful when we write functions and mixins. Conditionals give us

the chance to limit what we return to our CSS, avoid repeating

ourselves, and ultimately make our Sass more extensible.

46

@if and @else conditions
A simple example of conditional logic might be a mixin to define

what fonts we want to use in our site. Say we are using web fonts.

We might want to specify particular fonts rather than rely on the

browser to apply weight and style. In this instance, we use @if and @

else to say that we’d like to test a set of conditions:

@mixin font-type($font: 'base') {

	 @if ($font == bold) {

		 font-family:'Avenir-Demi'; }

	 @else if ($font == italic) {

		 font-family:'Avenir-LightItal'; }

	 @else {

		 font-family:'Avenir-Light'; }}

In this example, we are wrapping our statement in brackets. In Sass,

we don’t need to do this. We could equally write:

@if $font == bold {

	 font-family:'Avenir-Demi'; }

However, it is good practice when working with programming

languages to enclose your conditional statements. We use the

double equal (==) to test our variable against certain conditions; in

this instance, the font-weight or style we want to apply. To access the

mixin, we would then use the following:

47

.heading {

	 @include font-type(bold); }

And the resulting output is:

.heading {

	 font-family: 'Avenir-Demi'; }

We can also use conditions directly in our Sass. For example:

$weather: sunny;

p {

	 @if ($weather == overcast) {

		 color: grey; }

	 @else if ($weather == sunny) {

		 color: yellow; }

	 @else {

		 color: blue; } }

Which would return:

p {

	 color: yellow; }

In the above examples, we are testing strings using the equals

operator (==). We also have a range of other operators available to us:

48

The full range of operators are:

	 Operator	 Tests against

	 ==	 Equal to

	 !=	 Not equal to

	 >	 Greater than

	 <	 Less than

	 >=	 Greater than or equal to

	 <=	 Less than or equal to

@for loops and lists
Another conditional we can use is @for. The @for conditional loops

through a sequence until a set of conditions are met. Most often,

a for loop is used to go through a numeric sequence. For example,

with a simple grid system, we might want to set the width for a

series of columns on the fly. The following saves us from having to

write out rules for 10 columns:

@for $i from 1 through 10 {

	 .col-#{$i} { width: (10% * $i); }}

49

This outputs as:

.col1-1 {

	 width: 10%; }

.col1-2 {

	 width: 20%; }

…

.col1-10 {

	 width: 100%; }

Here, we are setting an initial value for $i (1), then saying we want to

increment it one at a time until we reach a defined limit (10). This is

called a counter and we can access this when writing out our HTML

classes. Note the use of the hash character (#) in our loop followed

by curly brackets. This is to denote that we want to access the $i as

a string in our selector. We can then use the integer $i and some

simple multiplication within our rules to produce our widths: 10 × 1

= 10, 10 × 2 = 20, etc.

As well as looping through a numeric sequence, we can also

loop through a range of string values using Sass lists. A list is a way

of grouping variables together. Say we want to introduce different

colour palettes for each section of our site. We can declare these in

our Sass as variables:

50

$home: #F7E900;

$about: #FF5F09;

$news: #A0005E;

$links: #41004B;

We can then put the variables into a list as follows:

$pages: $home, $about, $news, $links;

Having defined our list we can access this in a @for loop like so:

@for $i from 1 through length($pages) {

	 body.section-#{$i} {

		 background: nth($pages, $i); }}

We use the built-in Sass function length() to find out how many

items there are in our list and use this to loop through our list items,

again using a counter, until we reach this value. We use the hash

character to bring our integer into our selector and then access one

of a range of built-in Sass functions – nth() – to retrieve the value in

our list. This basically pulls out the defined value for the $pages item

at each stage of our loop.

So to recap: we use length() to find out how many items are in

our list, and nth() to find out the value at a particular position in our

list. If you have worked with languages like PHP or JavaScript before,

you will see that lists are similar to arrays.

51

The end result of our above Sass is a set of selectors based on our

pre-defined values:

body.section-1 {

	 background: #F7E900; }

body.section-2 {

	 background: #FF5F09; }

…

In general, @for loops are most useful when using numbers.

When we are working with strings and lists it is much more

useful to use @each.

@each loops and Sass maps
Taking the $pages list and values defined in our last example, we can

use @each to loop through our values for our CSS:

@each $item in $pages {

	 body.section-#{ index($pages, $item)} {

		 background: $item; }}

@each lets us loop through the individual values within our list.

However, rather than using $i to increment through each instance,

we use $item to loop through the values in our $pages list, which

we access as $item. The index() method used here is the reverse

of nth() used above. We are using this to get the position of the

value that we are returning from our each loop in our list. However,

52

.section-1 is not a very useful class. We can use Sass maps to make

our CSS classes more meaningful. A Sass map is where we declare

our list as a set of key:value pairs. For example:

$pages: (

	 home: #F7E900,

	 about: #FF5F09,

	 news: #A0005E,

	 links: #41004B);

We can then use the @each conditional to access these

key:value pairs:

@each $key, $value in $pages {

	 body.section-#{ $key} {

		 background: $value; }}

Here, we are taking the $key to define our CSS selector and the

$value to define our CSS value. This outputs the much more useful

and semantic:

body.section-home {

	 background: #F7E900; }

body.section-about {

	 background: #FF5F09; }

…

53

So, with a few simple built in methods, we can loop through lists and

variables to avoid having to write out lots of Sass.

4

Organising
Sass

56

So we have covered the basics of Sass and looked at ways we can

use mixins and functions to extend the Sass we are writing. With

conditional logic, we can start to extend this further. This keeps our

working code cleaner and concise whilst Sass takes care of the CSS.

This is a key part of making your front-end code more organised.

We can take this idea of breaking our code into smaller,

reusable components and apply this to our files.

@import and partials

You may be accustomed to using @import within CSS. This lets us

break our CSS into different files and then request them as we need

them in our CSS. For example, if we are using media queries:

@media screen and (min-width: 640px) {

	 @import url(tablet.css) }

When we are using version control or working across teams,

breaking our CSS down into smaller files is a great way to avoid

conflicts and keep our CSS rules in thematic groups. However, the

one main problem with this approach is that for each @import, our

browser has to make another HTTP request and using lots of

@imports can really slow down our page load time. With Sass, we can

use @imports to break our Sass into different files but when it comes

to being processed, we would still only output a single CSS file.

http://www.fivesimplesteps.com/products/web-performance

57

In Sass, @import is very similar to CSS, except we just need to

mention the file name we want to include. We don’t even need to

include the file extension:

@media screen and (min-width: 640px) {

	 @import 'views-tablet'; }

You can create as few or as many files as you want but if we want to

make our code modular, then it is good practice to start breaking

our CSS down into thematic files. For example, we might organise

our Sass into broad thematic .scss files such as:

forms.scss

tables.scss

layout.scss

The one problem with this approach is that, if we are using Sass to

listen to changes in a folder, we will end up with CSS equivalents for

each of these files, even if we’d like to output them all into a single

CSS file. The way to avoid this is to use the underscore character

(_) at the start of each filename. This tells Sass we are treating this

as a partial file, to be included in other Sass files, but don’t want

to output it as CSS. We don’t need to use the underscore when

referencing the file in our Sass:

// file _forms.scss

@import 'forms';

58

One benefit of @imports in Sass is that it doesn’t matter where we

include them. With CSS, @import rules have to be declared before we

start defining any other CSS. With Sass, we can use them anywhere

in our .scss files and they will still work. We just need to consider

that Sass is processed in sequence, so if we are putting variables,

functions, or mixins in an included file, we need to make sure we

import it before referencing them.

File organisation

It is beyond the scope of this guide for a detailed discussion on

how you should organise your Sass files. This is a matter of great

debate and opinion with no correct way. However I agree with Harry

Roberts when he says that “it is a good idea to split discrete chunks of

code into their own files." Personally I tend to group my Sass files into

folders based on theme and context.

/libs

/components

/views

In the libs folder I place core files to be used throughout the project,

for example a reset file to define some consistent CSS styles, as well

as my mixins and variables. If I'm using any third-party CSS such as

needed for a lightbox gallery or a grid system these would also go in

this folder, eg:

http://cssguidelin.es/#multiple-files
http://cssguidelin.es/#multiple-files
http://necolas.github.io/normalize.css/

59

/libs/_reset.scss

/libs/_variables.scss

/libs/_mixins.scss

/libs/_gridset.scss

In my components folder I borrow from the principles of Atomic

Design to organise my Sass rules into files relating to their specific

context of use. For example form elements, navigation, accordians

and base typography styles. The thing to remember when

organising your Sass files is that you can have as few or as many as

you need and can nest these as deep as you want:

/components/base/_nav.scss

/components/base/_buttons.scss

/components/base/_type.scss

/components/layout/_header.scss

/components/layout/_footer.scss

/components/theme/_palette.scss

…

Finally in my views folder I place Sass rules for responsive layouts

tied to the specific media queries we will be using in our designs:

/views/core.scss

/views/tablet.scss

/views/desktop.scss

http://bradfrost.com/blog/post/atomic-web-design/
http://bradfrost.com/blog/post/atomic-web-design/

60

To retiterate - there is no right or wrong way to organise your Sass

rules but the more you arrange these into separate files and folders

the easier they'll be to work with.

Commenting your Sass

An essential part of organising your Sass is to use comments. There

is no such thing as too many comments when you are writing your

CSS. Comments help us to understand the rules we are defining

and explain our decision making to others when we have to share

our code, either within a team or when our Sass files are part of a

deliverable for a client.

In Sass there are two kinds of comments: a double forward

slash – // – for single line comments and the more familiar method

from CSS – /* */ – for multi-line comments:

// this is a single line comment

/*

	 this is a

	 multi-line comment */

The thing to note is that single-line comments will only ever appear

in your Sass files but multi-line comments will normally be added

to our CSS. Think of single line comments as private development

comments and multi-line comments as public comments for

describing your CSS output. However, we can control whether

comments are included in our CSS through output styles.

61

Controlling your Sass output

Although we’ve only used the default Sass output style so far,

there are in fact four main styles: nested, expanded, compact, and

compressed. The default style is nested and will output in a format

showing our nested selectors with indentation to show context and

hierachy.

For example, our Sass might be as follows:

.heading {

	 color: red;

	 &-blue {

		 color: blue; }}

With the default, nested style this outputs CSS as:

.heading {

	 color: red; }

.heading-blue {

	 color: blue; }

We can change the style of Sass we produce by using the --style

command followed by the style we want to adopt. For example,

to output expanded CSS we would enter the following in the

command line:

sass --watch style.scss:style.css --style expanded

62

This would produce the following CSS:

.heading {

	 color: red;

}

.heading-blue {

	 color: blue;

}

Using --style compact would instead output the following CSS:

.heading { color: red; }

.heading-blue { color: blue; }

And finally, --style compressed outputs the following, minified CSS:

.heading{color:red}.heading-blue{color:blue}

When we are producing code for our production environment (i.e.

our live site), it is good practice to output our CSS as compressed.

This keeps the file size down and speeds up our page load time. If we

wanted to include comments in our compressed styles (for example,

to include copyright or attribution information), then we add an

exclamation mark to the start of our comment:

/*!

	 This comment will be shown, even when compressed */

63

Orientation with Source Maps

The one problem we can encounter with breaking our Sass into

different files and controlling their output is that it can become very

difficult to debug our CSS when things go wrong. Thankfully, in Sass

3.3, source maps were introduced. You remember earlier when we

first compiled our Sass into CSS two files were created: style.css

and style.css.map? Well, the .css.map file is there to help us know

where our CSS rules are coming from. The Development Inspector

in most modern browsers would normally show us where a CSS rule

is coming from by telling us the line of the CSS file that is applying

that rule. That is no good to us when we have broken our Sass down

into different files. With Source Maps, when we compile our CSS

and view the end result in a browser, the Inspector will show us the

location of the Sass rules that are affecting that element:

64

Source maps are supported in the more modern browsers: Chrome,

Firefox and Safari. In Chrome, you may need to enable this option by

opening the Dev Tool settings and toggling the Enable CSS Source

Maps option under Sources. Internet Explorer 11 in Windows 8.1 also

offers source map support.

We can now see how partials are able to help us organise our

Sass into distinct files and with source maps, we can see how and

where our Sass affects our CSS. With comments, we can help others

understand the CSS we write and by using the style command, we

can change the format of the CSS we are producing. In the next

chapter, I will talk you through the various ways you can level up what

you have learned so far through extending the core features of Sass.

65

5

Level up
your Sass

68

In this guide so far, the examples have been intentionally simple to

help explain the terms and techniques of Sass. In this chapter, I want

to look at some more complicated applications for Sass and see how

we can start to use this in our real-life projects.

Dealing with errors

CSS is a pretty fault-tolerant language. If you use the wrong syntax

or put a semi-colon out of place, it is pretty unlikely that your styles

will break. However, as a pre-processor, Sass is pretty strict when

you make mistakes. Chances are that in the course of following this

guide, you have probably hit a few errors yourself. Errors in Sass will

likely cause the CSS not to compile properly, if at all. Fortunately,

Sass is pretty good at explaining the source of processing problems.

For example, if I write the following:

.nav { background-color: red: }

Can you spot the error? Sass will throw the following back in the

command line, telling me where I have made a mistake:

error style.scss (Line 1: Invalid CSS after " color: red":

	 expected ";", was ":")

69

Furthermore, if we try to access the page requesting our CSS, we will

be presented with a bit more context for the offending error:

Media query bubbling

The arrival of Sass has coincided with increasingly sophisticated

CSS. The emergence of responsive web design in particular and its

three tenets of fluid grids, media queries and flexible images have

led to more complicated demands on our CSS. As we saw in the last

chapter with media queries, it can be relatively straightforward to

group our Sass into the context of how our CSS is going to be applied

(e.g. organised into mobile, tablet and desktop views). At the same

time, however, many front-end developers have started to adopt a

http://alistapart.com/article/responsive-web-design

70

more modular method to creating their CSS. Concepts like atomic

design and object oriented CSS have meant breaking your CSS down

not necessarily into the context of delivery, but rather into more

thematic contexts such as forms, tables, navigation, etc.

Whilst this modular approach is not necessarily incompatible

with the broader ideas of responsive web design, the practicalities

of writing and maintaining CSS that supports both approaches can

rapidly become very complicated. However, Sass makes this much

more straightforward through the concept of media query bubbling.

To provide an example: if we wanted to apply a media query to a

specific element in CSS, we would write the following:

.aside {

	 width: 100%; }

@media screen and (min-width: 800px) {

	 .aside {

		 float: right;

		 width: 35%; }}

This is simply saying that by default, our .aside element is full

width but once our viewport reaches 800px, we want the .aside

element to be floated right with a width of 35%. The problem with

the above is that we end up with a lot of repetition because we have

to write our selector out twice.

With Sass, we can place our media queries within our parent

selector and when outputted to CSS, the query will be ‘bubbled’ up.

So taking the above example, we can write:

http://bradfrost.com/blog/post/atomic-web-design/
http://bradfrost.com/blog/post/atomic-web-design/
https://github.com/stubbornella/oocss/wiki

71

.aside {

	 width: 100%;

	 @media screen and (min-width: 800px) {

		 float: right;

		 width: 35%; }}

This produces exactly the same CSS we had before:

.aside {

	 width: 100%; }

@media screen and (min-width: 800px) {

	 .aside {

		 float: right;

		 width: 35%; }}

Media query bubbling then provides a way of keeping our media

queries much more focussed. The one problem with this approach

is that we end up writing out our media queries multiple times.

We can simplify this if we use variables to determine our common

breakpoints. For example, we might want to define a set of variables

outlining our main breakpoints as follows:

$mobile: 640px;

$tablet: 800px;

$desktop: 1024px;

72

Or:

$break-small: 640px;

$break-medium: 800px;

$break-large: 1024px;

We can then use these variables within our media queries. That way,

if we want to change our breakpoints at a later stage we only have to

update the corresponding variable and this will cascade throughout

our CSS.

.aside {

	 float: none;

	 width: 100%;

	 @media screen and (min-width: $break-medium) {

		 float: right;

		 width: 35%; }}

Another way we can level-up our media queries is to write our own

mixin to save us having to write out our media queries repeatedly:

@mixin responsify($breakpoint) {

	 @media (min-width: $breakpoint) {

		 @content; }}

73

This is the same as the mixins we created in Chapter 3 but

introduces a new command: @content. The @content block is used to

reproduce a set of style rules we define when requesting our mixin

(note the curly brackets following our mixin @include):

.article {

	 @include responsify($break-small) {

		 float: left; }}

This takes the properties included in our .article declaration and

wraps them in the CSS generated by our mixin. So the above

example will be outputted as:

@media (min-width: 640px) {

	 .article {

		 float: left; }}

Clever hey? This keeps our Sass much leaner and gives us the

opportunity to modify our media queries by updating the mixin.

For example, if we wanted to specify a maximum width as well as a

minimum width we can add more arguments to our mixin:

74

@mixin responsify($min, $media: screen, $max: false) {

	 @if $max {

		 @media #{ $media} and (min-width: $min) and (max-width:

		 $max) {

			 @content; }}

	 @else {

		 @media #{$media} and (min-width: $min) {

			 @content; }}}

Here, we are passing three arguments into our mixin: minimum

width ($min), media type ($media) and maximum width ($max). For

media type and maximum width, we are setting default values in

case these aren’t entered as arguments: a default value of screen

for $media and a default value of false for $max. This means that if

an argument for $max is not entered, it will assume we only want to

generate a media query for min-width.

In our mixin, we use an @if condition to see if an argument has

been entered for $max. If so, we then want to generate a max-width

in our media query. So despite updating our mixin, our original

example would still work:

.article {

	 @include responsify($break-small) {

		 float: left; }}

However, by adding more arguments, we can generate more

powerful and flexible media queries:

75

.article {

	 @include responsify($break-small, screen, $break-medium -

	 1) {

		 float: left; }}

Which will output:

@media screen and (min-width: 640px) and (max-width: 799px) {

	 .article {

		 float: left; }}

Note we are reducing our max-width value by 1. When we use media

queries for responsive design, we need to be careful that we don’t

create rules that overlap breakpoints. This ensures that our media

query will only go up to the defined maximum breakpoint. If we

then want to add a media query for $break-large, we know this will

start at 800px and not overlap with the queries we have already

defined.

Sass built-in functions

As well as writing our own functions and mixins, Sass comes with

a range of its own functions that we can access. We have already

touched on some built-in functions – for example, the index()

and nth() functions – and whilst the full list of Sass functions are

too numerous to cover in this guide, it’s worth looking at a couple

of examples.

76

Some of the most helpful Sass functions make working with colours

easier. One I use all the time is rgba(). This is similar to the rgba()

value we have in CSS but in this instance, we don’t necessarily have

to use RGB colours (such as 255,0,0). Instead, we can throw in a

hexadecimal number and it will still work:

$red: #bd250a;

.alert {

	 background-color: $red;

	 background-color: rgba($red, 0.75); }

Here, we are defining the value for $red and then applying it twice.

First, to provide a fallback for browsers that don’t support rgba()

– IE8, I am looking at you! – and another to provide a degree of

transparency to the colour for more modern browsers. We could

even put this in a simple @mixin if we were going to write this out

repeatedly:

@mixin rgbaify($property, $colour, $opacity: 1) {

	 #{$property }: $colour;

	 #{$property }: rgba($colour, $opacity); }

You’ll recall the use of the hash (#) character to write variables into

our selectors from when we discussed lists and Sass maps. We would

then access this mixin as follows:

77

.alert {

	 @include rgbaify(background-color,$red, 0.75) }

// produces

.alert {

	 background-color: #f00;

	 background-color: rgba (255, 0, 0, 0.75); }

As well as the colour functions, there are a range of functions to

help us work with strings, lists and maps. For example, we can use

round(), ceil() and floor() to help us work with calculations or

decimal numbers:

.icon {

	 // round produces 26px (rounds to nearest integer)

	 width: round(25.5px);

	 // ceil produces 3px (rounds up to nearest integer)

	 width: ceil(25px / 10);

	 // floor produces 2px (rounds down to nearest integer)

	 width: floor(25px / 10); }

The best way of learning about the full range of Sass functions is to

dig in to the documentation, which is full of useful examples.

http://sass-lang.com/documentation/Sass/Script/Functions.html

78

Sass Maps

The final thing I want to cover in this chapter is Sass maps. We

looked at Sass maps when we looked at conditionals in the Chapter

3, but it is also worth looking at some of the more complicated

things we can achieve with them.

Sass Maps come with a range of functions to help us work

with lists of key:value pairs. However, the most useful function is

probably map_get(). This function lets us fetch the value from our

map based on its key.

Let’s use the map we employed in Chapter 3 to define a colour

palette for a site. In that example, we used the @each conditional to

loop through our key:value pairs. However, we can use map_get() at

any time to extract the value we need:

$pages: (

	 home: #F7E900,

	 about: #FF5F09,

	 news: #A0005E,

	 links: #41004B);

.news {

	 background-color: map_get($pages, news); }

// produces

.news {

	 background-color: #A0005E; }

79

We can then use the Sass built-in functions to build a palette based

around these colours. For example, we might want a border that is

darker than our background-color and a font-color that is lighter

than our core colour, which we can achieve with Sass’ darken()

and lighten() functions by simply expressing the amount (as a

percentile) by which we want to increase or decrease the brightness

of this colour:

.news {

	 background-color: map_get($pages,news);

	 border-color: darken(map_get($pages,news), 25%);

	 font-color: lighten(map_get($pages,news), 25%); }

// produces

.news {

	 background-color: #A0005E;

	 border-color: #200013;

	 font-color: #ff21a3; }

Again, we could probably wrap this in a mixin to make our lives

easier if we are iterating through several different colours. However,

another way we can work with variability in our colour palettes is

by creating a nested map. This technique was first suggested by Tom

Davies at Erskine Design and lets us organise our colour palette into

consistent, logical groups:

http://erskinedesign.com/blog/friendlier-colour-names-sass-maps/
http://erskinedesign.com/blog/friendlier-colour-names-sass-maps/

80

$palettes: (

	 blue: (

		 light: #9cb9c8,

		 base: #669db3,

		 dark: #f5814d),

	 red: (

		 light: #9cb9c8,

		 base: #669db3,

		 dark: #f5814d),

	 orange: (

		 light: #9cb9c8,

		 base: #669db3,

		 dark: #f5814d));

We can then access our colour values by using a function which

performs a map-get() in a map-get() function. Confused yet? Let’s

have a look at this function:

@function palette($palette, $tone: base) {

	 @return map-get(map-get($palettes, $palette), $tone); }

Here we are using $palette to get the colour we want to work with

and $tone to define the tone of our colour. We set a default tone of

‘base’ so the user doesn’t have to specify this second argument. In

the function, we use map-get() twice: once to get the values from

the list corresponding to our colour and again to get the child value

from our list corresponding to the desired tone.

81

To access this function we would then do the following:

.box {

	 color: palette(blue);

	 &-border {

		 border: 1px solid palette(blue, dark); }}

// produces

.box {

	 color: #669db3; }

.box-border {

	 border: 1px solid #f5814d; }

This is a really clever technique for keeping our colour variables

tight and consistently defined. No more $grey-light, $grey-lighter,

$grey-lightest in our Sass!

There are more map- functions but that is the subject of another

book altogether!

=

Conclusion

84

So, we’ve covered quite a lot in these five chapters. We’ve talked

about how to get up and running with Sass and some of the basics

of Sass including variables, functions, and mixins. We’ve seen how

we can introduce logic to write more sophisticated Sass and learned

about how to organise our Sass files. However, we’ve just scratched

the surface. New features are added to Sass regularly and with third-

party libraries such as Compass and Bourbon, we can start to write

more powerful Sass and extend the core libraries of functions and

mixins available to us. However, that is the subject of another guide!

If you are itching to take what you have learned in this guide

further, there are some great resources out there to discover

more advanced Sass techniques. I can heartily recommend Hugo

Giraudel’s Sass Guidelines about setting up and maintaining

Sass. The Sass Way is a great resource featuring articles covering

beginner, intermediate and advanced Sass techniques. Stu Robson’s

excellent Sass News is a weekly newsletter with the latest in Sass

news, articles, tutorials, and events. Finally, definitely keep an eye

out for Roy Tomeij’s forthcoming online course, Advanced Sass.

Hopefully, this guide will have given you enough confidence

and knowledge to start writing better CSS with Sass and using it in

your future projects.

http://compass-style.org/
5ss.co/bcws-bourbon
http://sass-guidelin.es/
http://thesassway.com/
http://www.sassnews.com/
http://advancedsass.com/

85

